
December 28, 2024

Perpetual Airdrop

Core AirDrop Implementation

perpetual-airdrop-core-airdrop-implementation

mailto:info@omniscia.io
https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3

Online report: perpetual-airdrop-core-airdrop-implementation

https://omniscia.io/
https://twitter.com/home
mailto:info@omniscia.io
https://omniscia.io/
https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3

Commit Hash Date Audit Report Hash

a5e8ff5ca3 December 20th 2024 f01ce762d0

61de1a0b9a December 28th 2024 4d8a2b2b70

9fe8a4a3fc December 28th 2024 7143ad38fb

Core AirDrop Implementation Security Audit
Audit Report Revisions

We were tasked with performing an audit of the Perpetual Airdrop codebase and in particular their Core
AirDrop Implementation module.

The system represents a multi-token airdrop system that utilizes historical balances as well as on-transfer
hooks to track eligibility.

Over the course of the audit, we identified that several misconfigurations are permitted albeit via the
deployers of the system which are expected to apply proper sanitization to their configurations.

We advise the Perpetual Airdrop team to closely evaluate all minor-and-above findings identified in the
report and promptly remediate them as well as consider all optimizational exhibits identified in the report.

Audit Overview

The Perpetual Airdrop team iterated through all findings within the report and provided us with a revised
commit hash to evaluate all exhibits on.

We evaluated all alleviations performed by Perpetual Airdrop and have identified that certain exhibits have
not been adequately dealt with. We advise the Perpetual Airdrop team to revisit the following exhibits:
PAC-01M , PAC-03C

Post-Audit Conclusion

https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/manual-review/PerpetualAirdropCoordinator-PAC#PAC-01M
https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/code-style/PerpetualAirdropCoordinator-PAC#PAC-03C

The Perpetual Airdrop team provided us with a follow-up commit hash to evaluate the remediations of the
two aforementioned exhibits.

We validated that both exhibits have been adequately addressed, and thus consider that all outputs of the
audit report have been properly consumed by the Perpetual Airdrop team with no outstanding remediative
actions remaining.

Post-Audit Conclusion (9fe8a4a3fc)

Severity Identified Alleviated Partially Alleviated Acknowledged

0 0 0 0

12 12 0 0

1 1 0 0

2 2 0 0

0 0 0 0

During the audit, we filtered and validated a total of 6 findings utilizing static analysis tools as well as
identified a total of 9 findings during the manual review of the codebase. We strongly recommend that
any minor severity or higher findings are dealt with promptly prior to the project's launch as they can
introduce potential misbehaviours of the system as well as exploits.

🎯 Scope
💻 Compilation
🔍 Static Analysis
👁 Manual Review
🖋 Code Style

Audit Synopsis

https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/scope
https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/compilation
https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/static-analysis
https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/manual-review
https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/code-style

Scope

The audit engagement encompassed a specific list of contracts that were present in the commit hash of the
repository that was in scope. The tables below detail certain meta-data about the target of the security
assessment and a navigation chart is present at the end that links to the relevant findings per file.

Repository: https://github.com/perpetual-airdrop/contracts
Commit: a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c
Language: Solidity
Network: Ethereum
Revisions: a5e8ff5ca3, 61de1a0b9a, 9fe8a4a3fc

File Total Finding(s)

1

2

3

0

7

2

Target

Contracts Assessed

contracts/AirdropSourceToken.sol (AST)

contracts/DatetimeLibrary.sol (DLY)

contracts/PerpetualAirdropToken.sol (PAT)

contracts/types/PerpetualAirdropTypes.sol (PAS)

contracts/PerpetualAirdropCoordinator.sol (PAC)

contracts/TripleAirdrop.sol (TAP)

https://github.com/perpetual-airdrop/contracts
https://github.com/perpetual-airdrop/contracts/tree/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c
https://github.com/perpetual-airdrop/contracts/tree/61de1a0b9a46e240dd85f368896ad9409af7358f
https://github.com/perpetual-airdrop/contracts/tree/9fe8a4a3fc82406799a88fe9c6b36da35eb40ec7
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/AirdropSourceToken.sol
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/DatetimeLibrary.sol
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/PerpetualAirdropToken.sol
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/types/PerpetualAirdropTypes.sol
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/PerpetualAirdropCoordinator.sol
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/TripleAirdrop.sol

Compilation

The project utilizes hardhat as its development pipeline tool, containing an array of tests and scripts coded
in TypeScript.

To compile the project, the compile command needs to be issued via the npx CLI tool to hardhat :

The hardhat tool automatically selects Solidity version 0.8.20 based on the version specified within the
hardhat.config.ts file.

The project contains discrepancies with regards to the Solidity version used as the pragma statements of the
contracts are open-ended (^0.8.20).

We advise them to be locked to 0.8.20 (=0.8.20), the same version utilized for our static analysis as well
as optimizational review of the codebase.

During compilation with the hardhat pipeline, no errors were identified that relate to the syntax or
bytecode size of the contracts.

npx hardhat compile

BASH

Static Analysis

The execution of our static analysis toolkit identified 47 potential issues within the codebase of which 36
were ruled out to be false positives or negligible findings.

The remaining 11 issues were validated and grouped and formalized into the 6 exhibits that follow:

ID Severity Addressed Title

DLY-01S Illegible Numeric Value Representations

PAC-01S Inexistent Event Emission

PAC-02S Inexistent Sanitization of Input Address

PAC-03S Inexistent Visibility Specifier

PAT-01S Inexistent Event Emissions

PAT-02S Inexistent Sanitization of Input Addresses

https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/static-analysis/DatetimeLibrary-DLY#DLY-01S
https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/static-analysis/PerpetualAirdropCoordinator-PAC#PAC-01S
https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/static-analysis/PerpetualAirdropCoordinator-PAC#PAC-02S
https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/static-analysis/PerpetualAirdropCoordinator-PAC#PAC-03S
https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/static-analysis/PerpetualAirdropToken-PAT#PAT-01S
https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/static-analysis/PerpetualAirdropToken-PAT#PAT-02S

Manual Review

A thorough line-by-line review was conducted on the codebase to identify potential malfunctions and
vulnerabilities in Perpetual Airdrop.

As the project at hand implements Perpetual Airdrop, intricate care was put into ensuring that the flow of
funds within the system conforms to the specifications and restrictions laid forth within the protocol's
specification.

We validated that all state transitions of the system occur within sane criteria and that all rudimentary
formulas within the system execute as expected. We pinpointed multiple potential misconfigurations
permitted within the system which could have had minor-to-moderate ramifications to its overall
operation; we urge the Perpetual Airdrop team to closely evaluate all minor-and-above exhibits within the
audit report.

Additionally, the system was investigated for any other commonly present attack vectors such as re-entrancy
attacks, mathematical truncations, logical flaws and ERC / EIP standard inconsistencies. The documentation
of the project was satisfactory to the extent it need be.

A total of 9 findings were identified over the course of the manual review of which 3 findings concerned
the behaviour and security of the system. The non-security related findings, such as optimizations, are
included in the separate Code Style chapter.

The finding table below enumerates all these security / behavioural findings:

ID Severity Addressed Title

DLY-01M Inexistent Subtraction of Year

PAC-01M Inexistent Validation of Non-Zero Winners

TAP-01M Inexistent Prevention of Duplicate Token Entries

https://eips.ethereum.org/
https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/code-style
https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/manual-review/DatetimeLibrary-DLY#DLY-01M
https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/manual-review/PerpetualAirdropCoordinator-PAC#PAC-01M
https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/manual-review/TripleAirdrop-TAP#TAP-01M

Code Style

During the manual portion of the audit, we identified 6 optimizations that can be applied to the codebase
that will decrease the operational cost associated with the execution of a particular function and generally
ensure that the project complies with the latest best practices and standards in Solidity.

Additionally, this section of the audit contains any opinionated adjustments we believe the code should
make to make it more legible as well as truer to its purpose.

These optimizations are enumerated below:

ID Severity Addressed Title

AST-01C Inefficient Re-Reservation of Memory

PAC-01C Ineffectual Usage of Safe Arithmetics

PAC-02C Inefficient Indices Initialization

PAC-03C Inefficient mapping Lookups

PAT-01C Improper Use-Case Permittance

TAP-01C Redundant Multi-Entry Eligibility Mechanism

https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/code-style/AirdropSourceToken-AST#AST-01C
https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/code-style/PerpetualAirdropCoordinator-PAC#PAC-01C
https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/code-style/PerpetualAirdropCoordinator-PAC#PAC-02C
https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/code-style/PerpetualAirdropCoordinator-PAC#PAC-03C
https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/code-style/PerpetualAirdropToken-PAT#PAT-01C
https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/code-style/TripleAirdrop-TAP#TAP-01C

DatetimeLibrary Static Analysis Findings

Type Severity Location

Code Style
DatetimeLibrary.sol:
• I-1:
• I-2:

The linked representations of numeric literals are sub-optimally represented decreasing the legibility of the
codebase.

contracts/DatetimeLibrary.sol

DLY-01S: Illegible Numeric Value Representations

L5
L6

Description:

Example:

uint256 constant OFFSET19700101 = 2440588;

SOL

5

https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/appendix/finding-types#code-style
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/DatetimeLibrary.sol#L5
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/DatetimeLibrary.sol#L6

To properly illustrate each value's purpose, we advise the following guidelines to be followed. For values
meant to depict fractions with a base of 1e18 , we advise fractions to be utilized directly (i.e. 1e17 becomes
0.1e18) as they are supported. For values meant to represent a percentage base, we advise each value to
utilize the underscore (_) separator to discern the percentage decimal (i.e. 10000 becomes 100_00 , 300
becomes 3_00 and so on). Finally, for large numeric values we simply advise the underscore character to be
utilized again to represent them (i.e. 1000000 becomes 1_000_000).

The number literals were appropriately adjusted, introducing the underscore character in the
OFFSET19700101 declaration whilst using a more explicit multiplication for the seconds in a day.

Recommendation:

Alleviation (61de1a0b9a46e240dd85f368896ad9409af7358f):

PerpetualAirdropCoordinator Static Analysis Findings

Type Severity Location

Language Specific

The linked function adjusts a sensitive contract variable yet does not emit an event for it.

contracts/PerpetualAirdropCoordinator.sol

PAC-01S: Inexistent Event Emission

PerpetualAirdropCoordinator.sol:L142-L144

Description:

Example:

function setRandomnessProvider(address _randomnessProviderAddress) external

onlyOwner {

 randomnessProvider = IRandomnessProvider(_randomnessProviderAddress);

}

SOL

142

143

144

https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/appendix/finding-types#language-specific
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/PerpetualAirdropCoordinator.sol#L142-L144

We advise an event to be declared and correspondingly emitted to ensure off-chain processes can properly
react to this system adjustment.

The RandomnessProviderSet event was introduced to the codebase and is correspondingly emitted in the
PerpetualAirdropCoordinator::setRandomnessProvider function, addressing this exhibit in full.

Recommendation:

Alleviation (61de1a0b9a46e240dd85f368896ad9409af7358f):

https://github.com/perpetual-airdrop/contracts/blob/61de1a0b9a46e240dd85f368896ad9409af7358f/contracts/PerpetualAirdropCoordinator.sol#L142-L144

Type Severity Location

Input Sanitization

The linked function accepts an address argument yet does not properly sanitize it.

The presence of zero-value addresses, especially in constructor implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of
off-chain software related bugs.

contracts/PerpetualAirdropCoordinator.sol

PAC-02S: Inexistent Sanitization of Input Address

PerpetualAirdropCoordinator.sol:L142-L144

Description:

Impact:

Example:

function setRandomnessProvider(address _randomnessProviderAddress) external

onlyOwner {

 randomnessProvider = IRandomnessProvider(_randomnessProviderAddress);

}

SOL

142

143

144

https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/appendix/finding-types#input-sanitization
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/PerpetualAirdropCoordinator.sol#L142-L144

We advise some basic sanitization to be put in place by ensuring that the address specified is non-zero.

The input _randomnessProviderAddress address argument of the
PerpetualAirdropCoordinator::setRandomnessProvider function is adequately sanitized as non-zero in
the latest in-scope revision of the codebase, addressing this exhibit.

Recommendation:

Alleviation (61de1a0b9a46e240dd85f368896ad9409af7358f):

https://github.com/perpetual-airdrop/contracts/blob/61de1a0b9a46e240dd85f368896ad9409af7358f/contracts/PerpetualAirdropCoordinator.sol#L142-L144

Type Severity Location

Code Style

The linked variable has no visibility specifier explicitly set.

contracts/PerpetualAirdropCoordinator.sol

PAC-03S: Inexistent Visibility Specifier

PerpetualAirdropCoordinator.sol:L28

Description:

Example:

uint32 numRegularAirdropWinners;

SOL

28

https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/appendix/finding-types#code-style
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/PerpetualAirdropCoordinator.sol#L28

We advise one to be set so to avoid potential compilation discrepancies in the future as the current
behaviour is for the compiler to assign one automatically which may deviate between pragma versions.

The public visibility specifier has been introduced to the referenced variable, preventing potential
compilation discrepancies and addressing this exhibit.

Recommendation:

Alleviation (61de1a0b9a46e240dd85f368896ad9409af7358f):

PerpetualAirdropToken Static Analysis Findings

Type Severity Location

Language Specific

PerpetualAirdropToken.sol:
• I-1:
• I-2:
• I-3:

The linked functions adjust sensitive contract variables yet do not emit an event for it.

contracts/PerpetualAirdropToken.sol

PAT-01S: Inexistent Event Emissions

L34-L36
L38-L40
L42-L44

Description:

Example:

function setCoordinator(address _coordinator) external onlyOwner {

 coordinator = _coordinator;

}

SOL

34

35

36

https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/appendix/finding-types#language-specific
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/PerpetualAirdropToken.sol#L34-L36
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/PerpetualAirdropToken.sol#L38-L40
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/PerpetualAirdropToken.sol#L42-L44

We advise an event to be declared and correspondingly emitted for each function to ensure off-chain
processes can properly react to this system adjustment.

The CoordinatorSet , TransactionLoggerAdded , and TransactionLoggerRemoved events were introduced
to the codebase and are correspondingly emitted in the PerpetualAirdropToken::setCoordinator ,
PerpetualAirdropToken::addTransactionLogger , and
PerpetualAirdropToken::removeTransactionLogger functions respectively, addressing this exhibit in full.

Recommendation:

Alleviation (61de1a0b9a46e240dd85f368896ad9409af7358f):

https://github.com/perpetual-airdrop/contracts/blob/61de1a0b9a46e240dd85f368896ad9409af7358f/contracts/PerpetualAirdropToken.sol#L34-L36
https://github.com/perpetual-airdrop/contracts/blob/61de1a0b9a46e240dd85f368896ad9409af7358f/contracts/PerpetualAirdropToken.sol#L38-L40
https://github.com/perpetual-airdrop/contracts/blob/61de1a0b9a46e240dd85f368896ad9409af7358f/contracts/PerpetualAirdropToken.sol#L42-L44

Type Severity Location

Input Sanitization

PerpetualAirdropToken.sol:
• I-1:
• I-2:
• I-3:

The linked function(s) accept address arguments yet do not properly sanitize them.

The presence of zero-value addresses, especially in constructor implementations, can cause the contract
to be permanently inoperable. These checks are advised as zero-value inputs are a common side-effect of
off-chain software related bugs.

contracts/PerpetualAirdropToken.sol

PAT-02S: Inexistent Sanitization of Input Addresses

L34-L36
L38-L40
L42-L44

Description:

Impact:

Example:

function setCoordinator(address _coordinator) external onlyOwner {

 coordinator = _coordinator;

}

SOL

34

35

36

https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/appendix/finding-types#input-sanitization
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/PerpetualAirdropToken.sol#L34-L36
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/PerpetualAirdropToken.sol#L38-L40
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/PerpetualAirdropToken.sol#L42-L44

We advise some basic sanitization to be put in place by ensuring that each address specified is non-zero.

All input argument(s) of the PerpetualAirdropToken::setCoordinator ,
PerpetualAirdropToken::addTransactionLogger , and
PerpetualAirdropToken::removeTransactionLogger functions are adequately sanitized as non-zero in
the latest in-scope revision of the codebase, addressing this exhibit.

Recommendation:

Alleviation (61de1a0b9a46e240dd85f368896ad9409af7358f):

https://github.com/perpetual-airdrop/contracts/blob/61de1a0b9a46e240dd85f368896ad9409af7358f/contracts/PerpetualAirdropToken.sol#L34-L36
https://github.com/perpetual-airdrop/contracts/blob/61de1a0b9a46e240dd85f368896ad9409af7358f/contracts/PerpetualAirdropToken.sol#L38-L40
https://github.com/perpetual-airdrop/contracts/blob/61de1a0b9a46e240dd85f368896ad9409af7358f/contracts/PerpetualAirdropToken.sol#L42-L44

DatetimeLibrary Manual Review Findings

Type Severity Location

Logical Fault

The DatetimeLibrary::_daysToMonth function does not properly subtract the year from the _month
calculation to evaluate the actual month date.

The DatetimeLibrary::_daysToMonth function will yield continuously inflated values with the years
included.

contracts/DatetimeLibrary.sol

DLY-01M: Inexistent Subtraction of Year

DatetimeLibrary.sol:L24

Description:

Impact:

Example:

function _daysToMonth(uint256 _days) internal pure returns (uint256 month) {

 uint256 L = _days + 68569 + OFFSET19700101;

 uint256 N = 4 * L / 146097;

 L = L - (146097 * N + 3) / 4;

 L = L + 31;

 uint256 _month = 80 * L / 2447;

 L = _month / 11;

 _month = _month + 2 - 12 * L;

 month = _month;

SOL

20

21

22

23

24

25

26

27

28

29

https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/appendix/finding-types#logical-fault
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/DatetimeLibrary.sol#L20-L30
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/DatetimeLibrary.sol#L20-L30
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/DatetimeLibrary.sol#L24

Example (Cont.):

}

SOL

30

We advise the year to be removed per the original implementation based on the JD formula.

The code of the DatetimeLibrary::_daysToMonth function (now renamed to
DatetimeLibrary::_daysToDate) was updated to reflect the original implementation ensuring that the
month is appropriately evaluated.

Recommendation:

Alleviation (61de1a0b9a46e240dd85f368896ad9409af7358f):

https://github.com/bokkypoobah/BokkyPooBahsDateTimeLibrary/blob/master/contracts/BokkyPooBahsDateTimeLibrary.sol#L96-L97
https://github.com/perpetual-airdrop/contracts/blob/61de1a0b9a46e240dd85f368896ad9409af7358f/contracts/DatetimeLibrary.sol#L20-L30

PerpetualAirdropCoordinator Manual Review Findings

Type Severity Location

Input Sanitization

The PerpetualAirdropCoordinator::_setRegularAirdropConfig function does not validate that a non-
zero amount of airdrop winners have been defined.

The reward distribution mechanism will fail to execute properly if a distribution has been defined with zero
winners as no distributions beyond it will be processed.

contracts/PerpetualAirdropCoordinator.sol

PAC-01M: Inexistent Validation of Non-Zero Winners

PerpetualAirdropCoordinator.sol:L117

Description:

Impact:

Example:

// Set regular distributions

for (uint256 i = 0; i < _config.distributions.length; i++) {

 RegularDistribution memory _distribution = _config.distributions[i];

 numRegularAirdropWinners += _distribution.numWinners;

 // Create a new RegularDistribution in storage

 regularAirdropConfig.distributions.push();

 RegularDistribution storage newDistribution =

regularAirdropConfig.distributions[

 regularAirdropConfig.distributions.length - 1

];

SOL

114

115

116

117

118

119

120

121

122

123

https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/appendix/finding-types#input-sanitization
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/PerpetualAirdropCoordinator.sol#L107-L140
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/PerpetualAirdropCoordinator.sol#L117

Example (Cont.):

 // Set the basic properties

 newDistribution.sourceToken = _distribution.sourceToken;

 newDistribution.numWinners = _distribution.numWinners;

 newDistribution.distributionType = _distribution.distributionType;

 // Copy the distributions array

 for (uint256 j = 0; j < _distribution.distributions.length; j++) {

 newDistribution.distributions.push(

 Distribution({

 token: _distribution.distributions[j].token,

 amount: _distribution.distributions[j].amount

 })

);

 }

}

SOL

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

We advise such restrictions to be imposed, ensuring that no misbehaviours may arise when distributing
rewards from a regular airdrop.

While a non-zero check has been introduced for the numRegularAirdropWinners variable, no such check
was introduced for the actual _distribution.numWinners variable which renders this exhibit partially
addressed.

The code was updated further to ensure that the _distribution.numWinners is non-zero for each entry,
alleviating this exhibit in full.

Recommendation:

Alleviation (61de1a0b9a):

Alleviation (9fe8a4a3fc):

TripleAirdrop Manual Review Findings

Type Severity Location

Input Sanitization

Any duplicate token entry in the _tokens configured for a TripleAirdrop will result in double accounting
of balances and should be disallowed.

A TripleAirdrop defined with duplicate entries will misbehave in its cumulative accounting.

contracts/TripleAirdrop.sol

TAP-01M: Inexistent Prevention of Duplicate Token Entries

TripleAirdrop.sol:L23-L25

Description:

Impact:

Example:

for (uint256 i = 0; i < _tokens.length; i++) {

 tokens.add(_tokens[i]);

}

SOL

23

24

25

https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/appendix/finding-types#input-sanitization
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/TripleAirdrop.sol#L23-L25

We advise the TripleAirdrop::constructor to prevent duplicate entries either by requiring that the value
yielded by the EnumerableSet::add function is true or by mandating that the tokens are defined in a
strictly ascending order, either of which we consider an adequate resolution to this exhibit.

A require check was introduced as advised, ensuring duplicate tokens cannot be introduced.

Recommendation:

Alleviation (61de1a0b9a46e240dd85f368896ad9409af7358f):

https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/TripleAirdrop.sol#L16-L31

AirdropSourceToken Code Style Findings

Type Severity Location

Gas Optimization ,

The referenced return statement can yield the already-reserved winners variable directly.

contracts/AirdropSourceToken.sol

AST-01C: Inefficient Re-Reservation of Memory

AirdropSourceToken.sol:L22 L34

Description:

Example:

address[] memory winners = new address[](numWinners);

uint256 totalLikelihood;

uint256[] memory cumListLikelihoods = new uint256[](numLists);

// Calculate the likelihood for each list

for (uint8 i = 0; i < numLists; i++) {

 uint256 listLikelihood = balanceThresholds[i] * eligibilityLists[i].length();

 totalLikelihood += listLikelihood;

 cumListLikelihoods[i] = totalLikelihood;

}

SOL

22

23

24

25

26

27

28

29

30

31

https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/appendix/finding-types#gas-optimization
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/AirdropSourceToken.sol#L22
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/AirdropSourceToken.sol#L34

Example (Cont.):

if (totalLikelihood == 0) {

 return new address[](numWinners);

}

SOL

32

33

34

35

We advise this to be done so, optimizing the code's gas cost.

The code was optimized as advised, yielding the already-declared winners array in an optimal way.

Recommendation:

Alleviation (61de1a0b9a46e240dd85f368896ad9409af7358f):

PerpetualAirdropCoordinator Code Style Findings

Type Severity Location

Language Specific

The linked mathematical operation is guaranteed to be performed safely by logical inference, such as
surrounding conditionals evaluated in require checks or if-else constructs.

contracts/PerpetualAirdropCoordinator.sol

PAC-01C: Ineffectual Usage of Safe Arithmetics

PerpetualAirdropCoordinator.sol:L302

Description:

Example:

lastIndex--;

SOL

302

https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/appendix/finding-types#language-specific
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/PerpetualAirdropCoordinator.sol#L302

Given that safe arithmetics are toggled on by default in pragma versions of 0.8.X , we advise the linked
statement to be wrapped in an unchecked code block thereby optimizing its execution cost.

The referenced operation has been safely wrapped in an unchecked code block optimizing its gas cost.

Recommendation:

Alleviation (61de1a0b9a46e240dd85f368896ad9409af7358f):

Type Severity Location

Gas Optimization

The referenced indices are inefficiently initialized as the code could simply utilize the participants directly.

contracts/PerpetualAirdropCoordinator.sol

PAC-02C: Inefficient Indices Initialization

PerpetualAirdropCoordinator.sol:L281-L283

Description:

Example:

// Assign extra amounts using randomWords

if (remainder > 0) {

 uint256[] memory available = new uint256[](numParticipants);

 // Initialize available indices

 for (uint256 i = 0; i < numParticipants; i++) {

 available[i] = i;

 }

 uint256 lastIndex = numParticipants;

SOL

276

277

278

279

280

281

282

283

284

285

https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/appendix/finding-types#gas-optimization
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/PerpetualAirdropCoordinator.sol#L281-L283

Example (Cont.):

 for (uint256 i = 0; i < remainder; i++) {

 uint256 randomIndex = randomWords[i] % lastIndex;

 uint256 selectedIndex = available[randomIndex];

 address selectedParticipant = participants[selectedIndex];

 for (uint256 j = 0; j < numDistributions; j++) {

 Distribution memory distribution = initialAirdropDistributions[j];

 EnumerableMap.AddressToUintMap storage tokenEarnings = earnings[

 distribution.token

];

 (, uint256 currentAmount) =

tokenEarnings.tryGet(selectedParticipant);

 tokenEarnings.set(selectedParticipant, currentAmount +

distribution.amount);

 }

 // Move the picked participant to the end of the array to avoid re-

selection

 lastIndex--;

 if (randomIndex != lastIndex) {

 available[randomIndex] = available[lastIndex];

 }

 }

}

SOL

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

We advise the participants to be utilized directly, optimizing the code's gas cost significantly.

The code was updated per our recommendation, optimizing its gas cost significantly.

Recommendation:

Alleviation (61de1a0b9a46e240dd85f368896ad9409af7358f):

Type Severity Location

Gas Optimization ,

The linked statements perform key-based lookup operations on mapping declarations from storage multiple
times for the same key redundantly.

contracts/PerpetualAirdropCoordinator.sol

PAC-03C: Inefficient mapping Lookups

PerpetualAirdropCoordinator.sol:L531 L536

Description:

Example:

require(earnings[token].contains(account), 'No earnings');

uint256 amount = earnings[token].get(account);

// Update state

earnings[token].remove(account);

SOL

531

532

533

534

535

536

https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/appendix/finding-types#gas-optimization
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/PerpetualAirdropCoordinator.sol#L531
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/PerpetualAirdropCoordinator.sol#L536

As the lookups internally perform an expensive keccak256 operation, we advise the lookups to be cached
wherever possible to a single local declaration that either holds the value of the mapping in case of primitive
types or holds a storage pointer to the struct contained.

As the compiler's optimizations may take care of these caching operations automatically at-times, we advise
the optimization to be selectively applied, tested, and then fully adopted to ensure that the proposed
caching model indeed leads to a reduction in gas costs.

While the exhibit was marked as addressed in the GitHub repository, no alleviation was observed for it
rendering it to remain open.

The referenced mapping lookup pair has been optimized by storing the earnings[token] lookup to a local
storage variable, optimizing the codebase as advised.

Recommendation:

Alleviation (61de1a0b9a):

Alleviation (9fe8a4a3fc):

PerpetualAirdropToken Code Style Findings

Type Severity Location

Standard Conformity

The PerpetualAirdropToken::delegateBySig function will only permit a signed payload by the caller itself
which renders it redundant.

contracts/PerpetualAirdropToken.sol

PAT-01C: Improper Use-Case Permittance

PerpetualAirdropToken.sol:L131-L144

Description:

Example:

/**

 * @dev Restrict delegation to only allow self-delegation.

 */

function delegate(address delegatee) public override {

 require(

 delegatee == msg.sender,

 'Can only delegate to yourself'

);

 super.delegate(delegatee);

}

SOL

117

118

119

120

121

122

123

124

125

126

https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/appendix/finding-types#standard-conformity
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/PerpetualAirdropToken.sol#L131-L144
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/PerpetualAirdropToken.sol#L131-L144

Example (Cont.):

/**

 * @dev Restrict delegation by signature to only allow self-delegation.

 */

function delegateBySig(

 address delegatee,

 uint256 nonce,

 uint256 expiry,

 uint8 v,

 bytes32 r,

 bytes32 s

) public override {

 require(

 delegatee == msg.sender,

 'RestrictedDelegationToken: Can only delegate to yourself'

);

 super.delegateBySig(delegatee, nonce, expiry, v, r, s);

}

SOL

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

We advise it to be restricted altogether, ensuring callers invoke the PerpetualAirdropToken::delegate
function instead.

Signature-based delegation is properly restricted in the contract as advised, addressing this inconsistency.

Recommendation:

Alleviation (61de1a0b9a46e240dd85f368896ad9409af7358f):

https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/PerpetualAirdropToken.sol#L120-L126

TripleAirdrop Code Style Findings

Type Severity Location

Gas Optimization ,

The TripleAirdrop will maintain multiple eligibility lists yet the balance threshold for each will be the same,
meaning that maintaining each one is incorrect.

contracts/TripleAirdrop.sol

TAP-01C: Redundant Multi-Entry Eligibility Mechanism

TripleAirdrop.sol:L29 L70-L81

Description:

Example:

for (uint256 i = 0; i < numLists; i++) {

 eligibilityLists.push();

 balanceThresholds.push(_tokens.length * _singleTokenBalanceThreshold);

}

SOL

27

28

29

30

https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/appendix/finding-types#gas-optimization
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/TripleAirdrop.sol#L29
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/TripleAirdrop.sol#L70-L81

We advise the system to maintain a single eligibility list, greatly optimizing its gas cost.

The multi-entry eligibility mechanism was updated to incorporate the iterator in the calculation of the
threshold, ensuring that there is meaning in the distinct balance thresholds and thus addressing this exhibit.

Recommendation:

Alleviation (61de1a0b9a46e240dd85f368896ad9409af7358f):

Finding Types

A description of each finding type included in the report can be found below and is linked by each
respective finding. A full list of finding types Omniscia has defined will be viewable at the central audit
methodology we will publish soon.

As there are no inherent guarantees to the inputs a function accepts, a set of guards should always be in
place to sanitize the values passed in to a particular function.

These types of issues arise when a linked code segment may not behave as expected, either due to mistyped
code, convoluted if blocks, overlapping functions / variable names and other ambiguous statements.

Language specific issues arise from certain peculiarities that the Circom language boasts that discerns it from
other conventional programming languages.

Circom defaults to using the BN128 scalar field (a 254-bit prime field), but it also supports BSL12-381 (which
has a 255-bit scalar field) and Goldilocks (with a 64-bit scalar field). However, since there are no constants
denoting either the prime or the prime size in bits available in the Circom language, some Circomlib
templates like Sign (which returns the sign of the input signal), and AliasCheck (used by the strict versions
of Num2Bits and Bits2Num), hardcode either the BN128 prime size or some other constant related to
BN128. Using these circuits with a custom prime may thus lead to unexpected results and should be avoided.

In these types of findings, we identify whether a project conforms to a particular naming convention and
whether that convention is consistent within the codebase and legible. In case of inconsistencies, we point
them out under this category. Additionally, variable shadowing falls under this category as well which is
identified when a local-level variable contains the same name as a toplevel variable in the circuit.

This category is used when a mathematical issue is identified. This implies an issue with the implementation
of a calculation compared to the specifications.

Input Sanitization

Indeterminate Code

Language Specific

Curve Specific

Code Style

Mathematical Operations

This category is a bit broad and is meant to cover implementations that contain flaws in the way they are
implemented, either due to unimplemented functionality, unaccounted-for edge cases or similar
extraordinary scenarios.

This category is used when information that is meant to be kept private is made public in some way.

Under-constrained signals are one of the most common issues in zero-knowledge circuits. Issues with proof
generation fall under this category.

Logical Fault

Privacy Concern

Proof Concern

Severity Definition

In the ever-evolving world of blockchain technology, vulnerabilities continue to take on new forms and arise
as more innovative projects manifest, new blockchain-level features are introduced, and novel layer-2
solutions are launched. When performing security reviews, we are tasked with classifying the various types of
vulnerabilities we identify into subcategories to better aid our readers in understanding their impact.

Within this page, we will clarify what each severity level stands for and our approach in categorizing the
findings we pinpoint in our audits. To note, all severity assessments are performed as if the contract's logic
cannot be upgraded regardless of the underlying implementation.

There are five distinct severity levels within our reports; unknown , informational , minor , medium , and
major . A TL;DR overview table can be found below as well as a dedicated chapter to each severity level:

Impact (None) Impact (Low) Impact
(Moderate) Impact (High)

Likelihood (None)

Likelihood (Low)

Likelihood (Moderate)

Likelihood (High)

The unknown severity level is reserved for misbehaviors we observe in the codebase that cannot be
quantified using the above metrics. Examples of such vulnerabilities include potentially desirable system
behavior that is undocumented, reliance on external dependencies that are out-of-scope but could result in
some form of vulnerability arising, use of external out-of-scope contracts that appears incorrect but cannot
be pinpointed, and other such vulnerabilities.

In general, unknown severity level vulnerabilities require follow-up information by the project being audited
and are either adjusted in severity (if valid), or marked as nullified (if invalid).

Additionally, the unknown severity level is sometimes assigned to centralization issues that cannot be
assessed in likelihood due to their exploitation being tied to the honesty of the project's team.

The informational severity level is dedicated to findings that do not affect the code functionally and tend
to be stylistic or optimizational in nature. Certain edge cases are also set under informational
vulnerabilities, such as overflow operations that will not manifest in the lifetime of the contract but should be
guarded against as a best practice, to give an example.

Severity Levels

Unknown Severity

Informational Severity

Minor Severity

The minor severity level is meant for vulnerabilities that require functional changes in the code but tend to
either have little impact or be unlikely to be recreated in a production environment. These findings can be
acknowledged except for findings with a moderate impact but low likelihood which must be alleviated.

The medium severity level is assigned to vulnerabilities that must be alleviated and have an observable
impact on the overall project. These findings can only be acknowdged if the project deems them desirable
behavior and we disagree with their point-of-view, instead urging them to reconsider their stance while
marking the exhibit as acknowledged given that the project has ultimate say as to what vulnerabilities they
end up patching in their system.

The major severity level is the maximum that can be specified for a finding and indicates a significant flaw in
the code that must be alleviated.

Medium Severity

Major Severity

As the preface chapter specifies, the blockchain space is constantly reinventing itself meaning that new
vulnerabilities take place and our understanding of what security means differs year-to-year.

In order to reliably assess the likelihood and impact of a particular vulnerability, we instead apply an abstract
measurement of a vulnerability's impact, duration the impact is applied for, and probability that the
vulnerability would be exploited in a production environment.

Our proposed definitions are inspired by multiple sources in the security community and are as follows:

Impact (High): A core invariant of the protocol can be broken for an extended duration.
Impact (Moderate): A non-core invariant of the protocol can be broken for an extended duration or at
scale, or an otherwise major-severity issue is reduced due to hypotheticals or external factors affecting
likelihood.
Impact (Low): A non-core invariant of the protocol can be broken with reduced likelihood or impact.
Impact (None): A code or documentation flaw whose impact does not achieve low severity, or an issue
without theoretical impact; a valuable best-practice
Likelihood (High): A flaw in the code that can be exploited trivially and is ever-present.
Likelihood (Moderate): A flaw in the code that requires some external factors to be exploited that are likely
to manifest in practice.
Likelihood (Low): A flaw in the code that requires multiple external factors to be exploited that may
manifest in practice but would be unlikely to do so.
Likelihood (None): A flaw in the code that requires external factors proven to be impossible in a
production environment, either due to mathematical constraints, operational constraints, or system-
related factors (i.e. EIP-20 tokens not being re-entrant).

Likelihood & Impact Assessment

Disclaimer

The following disclaimer applies to all versions of the audit report produced (preliminary / public / private)
and is in effect for all past, current, and future audit reports that are produced and hosted under Omniscia:

Omniscia ("Omniscia") has conducted an independent security review to verify the integrity of and highlight
any vulnerabilities, bugs or errors, intentional or unintentional, that may be present in the codebase that
were provided for the scope of this Engagement.

Blockchain technology and the cryptographic assets it supports are nascent technologies. This makes them
extremely volatile assets. Any assessment report obtained on such volatile and nascent assets may include
unpredictable results which may lead to positive or negative outcomes.

In some cases, services provided may be reliant on a variety of third parties. This security review does not
constitute endorsement, agreement or acceptance for the Project and technology that was reviewed. Users
relying on this security review should not consider this as having any merit for financial advice or
technological due diligence in any shape, form or nature.

The veracity and accuracy of the findings presented in this report relate solely to the proficiency,
competence, aptitude and discretion of our auditors. Omniscia and its employees make no guarantees, nor
assurance that the contracts are free of exploits, bugs, vulnerabilities, deprecation of technologies or any
system / economical / mathematical malfunction.

This audit report shall not be printed, saved, disclosed nor transmitted to any persons or parties on any
objective, goal or justification without due written assent, acquiescence or approval by Omniscia.

All the information/opinions/suggestions provided in this report does not constitute financial or investment
advice, nor should it be used to signal that any person reading this report should invest their funds without
sufficient individual due diligence regardless of the findings presented in this report.

Information in this report is provided 'as is'. Omniscia is under no covenant to the completeness, accuracy or
solidity of the contracts reviewed. Omniscia's goal is to help reduce the attack vectors/surface and the high
level of variance associated with utilizing new and consistently changing technologies.

Omniscia in no way claims any guarantee, warranty or assurance of security or functionality of the
technology that was in scope for this security review.

IMPORTANT TERMS & CONDITIONS REGARDING OUR SECURITY
AUDITS/REVIEWS/REPORTS AND ALL PUBLIC/PRIVATE
CONTENT/DELIVERABLES

In no event will Omniscia, its partners, employees, agents or any parties related to the design/creation of this
security review be ever liable to any parties for, or lack thereof, decisions and/or actions with regards to the
information provided in this security review.

Cryptocurrencies and all other technologies directly or indirectly related to cryptocurrencies are not
standardized, highly prone to malfunction and extremely speculative by nature. No due diligence and/or
safeguards may be insufficient and users should exercise maximum caution when participating and/or
investing in this nascent industry.

The preparation of this security review has made all reasonable attempts to provide clear and actionable
recommendations to the Project team (the “client”) with respect to the rectification, amendment and/or
revision of any highlighted issues, vulnerabilities or exploits within the contracts in scope for this
engagement.

It is the sole responsibility of the Project team to provide adequate levels of test and perform the necessary
checks to ensure that the contracts are functioning as intended, and more specifically to ensure that the
functions contained within the contracts in scope have the desired intended effects, functionalities and
outcomes, as documented by the Project team.

All services, the security reports, discussions, work product, attack vectors description or any other materials,
products or results of this security review engagement is provided "as is" and "as available" and with all
faults, uncertainty and defects without warranty or guarantee of any kind.

Omniscia will assume no liability or responsibility for delays, errors, mistakes, or any inaccuracies of content,
suggestions, materials or for any loss, delay, damage of any kind which arose as a result of this
engagement/security review.

Omniscia will assume no liability or responsibility for any personal injury, property damage, of any kind
whatsoever that resulted in this engagement and the customer having access to or use of the products,
engineers, services, security report, or any other other materials.

For avoidance of doubt, this report, its content, access, and/or usage thereof, including any associated
services or materials, shall not be considered or relied upon as any form of financial, investment, tax, legal,
regulatory, or any other type of advice.

